Optimizing Blood Utilization Using Real-Time Clinical Decision Support

HIMSS Davies Award Case Study
Meg Furukawa, MN, RN-BC, CNS
Nurse Informaticist
MFurukawa@mednet.ucla.edu

Alyssa Ziman, MD
Professor of Pathology and Laboratory Medicine
Director of Transfusion Medicine
AZiman@mednet.ucla.edu
Agenda

• Overview of Patient Blood Management
• Red Blood Cell (RBC) Utilization Project
 • UCLA Data
 • Appropriate transfusions
 • 2 unit RBC orders
 • Strategy and Design
 • How Health IT was Utilized
• Value Derived
4 hospitals
795 inpatient beds
60,000 hospital encounters
250+ outpatient practices
30+ specialties
1.9 million ambulatory visits per year
 • 310,000 primary care population
 • 59% patients in plan where UCLA shares some risk
 • 208,000 specialty care population
Mission, Vision, Goal

Our **mission** is to deliver leading-edge patient care, research, and education.

Our **vision** is to heal humankind, one patient at a time, by improving health, alleviating suffering and delivering acts of kindness.

Our **goal** is to provide the best patient experience with every patient, every encounter, every time.
Overview of Patient Blood Management
Patient Blood Management

A patient-centered, evidence-based multidisciplinary approach to utilizing a rare and limited resource, blood.

- Optimize the use of blood and blood components
- Involves assistance and coordination from multiple medical disciplines
- Goals:
 - Anemia Management
 - Minimization of iatrogenic blood loss
 - Elimination of preoperative autologous donated blood
 - Use of autologous blood recovery and biologic therapy
 - Reduction of unnecessary transfusions through the use of restrictive transfusion triggers and 1-unit orders
 - Education of healthcare workers and auditing of transfusion practice
Patient Blood Management
Recognized by the WHO, TJC, AABB, AMA, other national/international societies

Five Things Physicians and Patients Should Question

1. Don’t transfuse more units of blood than absolutely necessary.
Each unit of blood carries risks. A restrictive threshold (7.0-9.0 g/dl) should be used for the vast majority of hospitalized, stable patients without evidence of inadequate tissue oxygenation (evidence supports a threshold of 8.0 g/dl in patients with pre-existing cardiovascular disease). Transfusion decisions should be influenced by symptoms and hemoglobin concentration. Single unit red cell transfusions should be the standard for non-bleeding, hospitalized patients. Additional units should only be prescribed after re-assessment of the patient and their hemoglobin value.

2. Don’t transfuse red blood cells for iron deficiency without hemodynamic instability.
Blood transfusion has become a routine medical response despite cheaper and safer alternatives in some settings. Pre-operative patients with iron deficiency and patients with chronic iron deficiency without hemodynamic instability (even with low hemoglobin levels) should be given oral and/or intravenous iron.

American Society of Anesthesiologists
American Society of Hematology

Five Things Physicians and Patients Should Question

Society of Hospital Medicine – Adult Hospital Medicine
Magnitude of the Problem

• Blood transfusion is the most common procedure performed during hospitalizations (occurs in 11% of all hospital admissions with a procedure)1
• Up to 59% of RBC orders are inappropriate2

• UCLA Health Pre-Intervention State
 • \textasciitilde{}30,000 units of RBC units transfused annually
 • 2 units routinely ordered for transfusion without an interval Hgb check
 • Two sources for orders – order sets and order panels
 • Interns and residents do most of the blood ordering
 • Orders based on hemoglobin (Hgb) level or provider’s ordering habits

1 Most Frequent Procedures Performed in US Hospitals, 2010 Healthcare Cost and Utilization Project (HCUP). February 2013. Agency for Healthcare Research and Quality
RBC Utilization Project
Red Blood Cell Utilization Project

1. Develop Partnerships
2. Establish Goals & Create Metrics
3. Analyze Baseline Data
4. Develop Strategy
5. Build Consensus
1. Develop Partnerships

- Approached by Hospitalists
- Multidisciplinary Team
 - Hospitalists
 - Transfusion Medicine Physicians/Transfusion Safety Officer
 - Nursing
 - IT
2. Establish Goals & Create Metrics

Goals
- Standardize transfusion practice
- Avoid transfusion at Hgb ≥ 8 g/dL in stable patients
- Reduce routine 2 unit RBC orders

Metric 1: % Orders with Appropriate Indications
- “Appropriate indication” for 1st unit
 - Patient does not have coronary disease AND most recent prior Hgb < 7 g/d
 - OR -
 - Patient has coronary disease AND most recent prior Hgb < 8 g/dL
- “Appropriate indication” for 2nd unit (when 2 units ordered)
 - Patient does not have coronary disease AND most recent prior Hgb < 6 g/dL
 - OR -
 - Patient has coronary disease AND most recent prior Hgb < 7 g/dL

Metric 2: % Orders for 2 units RBCs
- Aim for orders for 1 RBC unit with post-Hgb assessment; minimize orders where the 2nd unit is considered “inappropriate”
3. Analyze Baseline Data

Baseline Data Period (March 2013 – June 2014)

- Identify ‘transfusion orders’ as non-future, non-standing, non-cancelled orders for ‘Transfuse RBC’
- Include the number of units requested and the indication noted in the order
- Identify authorizing provider associated with the order, and the location and service of the patient at the time of order

Inclusion/Exclusion

- Population limited to adults (age > 18)
- Excluded those with > 2 g drop Hgb in prior 48 hours
- Excluded transfuse orders initiated in the OR

Unit of analysis is individual unit of RBCs
3. Analyzing Baseline Data

Hospitalist RBC Utilization Project: Pre-Intervention

SMUCLA Data

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Transfuse RBC orders</td>
<td>6,166</td>
</tr>
<tr>
<td>“Inappropriate”</td>
<td>4,533 (73%)</td>
</tr>
<tr>
<td>• Hgb >8g/dL at the time of order</td>
<td>1,860 (30%)</td>
</tr>
</tbody>
</table>
3. Analyzing Baseline Data

- Wide Variation in Appropriate Transfusions by Hospitalist
4. Develop Strategy

- Capitalize on the Multidisciplinary Team and enlist hospital administration and quality department to create awareness
- Utilize IT intervention with Computerized Provider Order Entry alerts triggered based on patient Hgb and physician order
- Multi-intervention plan
 - Develop transfusion order sets embedded with evidence-based ordering
 - Continue Clinical Education Program
 - Provide initial feedback to Physicians and Departments
How Health IT Was Utilized
4. Develop Strategy

Options for Embedded Decision Support

1. Display Hgb result in the order with informational guideline text or a web link
 • Pros: Quicker and easier to build, little training required
 • Cons: Passive alert, provider-dependent for compliance with guidelines

2. Best Practice Advisory (BPA) for RBCs ordered outside of recommended guideline in blood panels and order sets
 • Pros: Active alert, can quantify reasons for ordering, little training required
 • Cons: Requires more time to build, alert fatigue

3. Order set that is dynamic based on the patient’s hgb level
 • Pros: Dynamic alert, cleaner, more elegant, can use rules to determine when alerts appear
 • Cons: Complex build, ordering can only be done from order sets, more extensive training required
5. Build Consensus

• Subject Matter Experts
• Physician Informaticists
• New Project Request (NPR) Review Committee
• Clinical Optimization Review Council (CORC)
• Inpatient Advisory Group
Build Timeline

2015

- Define project
 - Explore options
- Build solution
 - Update orders
- Test build
- Implement solution
- Mar: Choose option
- Apr: Create BPA
- May: Train users
- June
- July
- Aug
- Sept
Pre-Intervention RBC Order
How Health IT Was Utilized

• Create a BPA to take providers from the RBC order panel to the Blood Bank order set

• Embed real-time clinical decision support into the ordering process
 • Display the patient’s most recent hemoglobin result in the RBC order
 • Add a defaulted hemoglobin lab order if no result in past 48 hours
 • Display the transfusion guidelines based on the patient’s most recent hemoglobin result
 • Default the RBC order to 1 unit if the hemoglobin is 7 – 10 g/dL
 • Add an order to draw a hemoglobin level 15 minutes after the transfusion of the first unit of RBCs is completed
RBC Ordering Workflow

• Provider enters order for RBCs
• Redirect BPA fires and sends user to the Blood Bank order set
RBC Ordering Workflow

- Hemoglobin order defaults if there is no result in the last 48 hours
RBC Ordering Workflow

• Prepare RBC order displays the patient’s most recent hemoglobin in the last 48 hours and guideline verbiage based on the hemoglobin value.

• Prepare RBC order defaults to 1 unit if the hemoglobin is 7 – 10 g/dL.
RBC Ordering Workflow

• Order to draw Hgb 15 minutes after the first unit of transfusion is completed

• Provider signs order
Verbiage for Hgb between 7.0 and 7.9 g/dL

CONSIDER RESTRICTIVE TRANSFUSION STRATEGY. Your patient’s hemoglobin (Hgb) is between 7.0 and 7.9 g/dL which is well tolerated by most hospitalized, stable patients even in the presence of pre-existing cardiovascular disease.

Limit transfusions to:
1. Patients with clinically significant signs or symptoms of anemia or ongoing active bleeding
2. Patients with pre-existing cardiovascular disease AND symptoms of chest pain, orthostatic hypotension, tachycardia unresponsive to fluid or congestive heart failure.
3. Postoperative surgical patients, or s/p PCI

<table>
<thead>
<tr>
<th>Component</th>
<th>Time Elapsed</th>
<th>Value</th>
<th>Range</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>17 hours (08/15/10 2210)</td>
<td>7.2 (L)</td>
<td>13.5 - 17.1 g/dL</td>
<td>Final result</td>
</tr>
<tr>
<td></td>
<td>1 day (08/15/18 0150)</td>
<td>8.0 (L)</td>
<td>13.5 - 17.1 g/dL</td>
<td>Final result</td>
</tr>
</tbody>
</table>

- Order defaults to 1 unit
Verbiage for Hgb between 8.0 and 10.0 g/dL

CONSIDER TRANSFUSION ONLY IN SPECIFIC CIRCUMSTANCES. Your patient’s hemoglobin (Hgb) is between 8.0 and 10.0 g/dL.

Limit transfusions to:
1. Patients with clinically significant signs or symptoms of anemia or ongoing active bleeding.
2. Patients with pre-existing cardiovascular disease AND symptoms of chest pain, orthostatic hypotension, tachycardia unresponsive to fluid, or congestive heart failure.

• Order defaults to 1 unit
Verbiage for Hgb > 10.0 g/dL

CONSIDER TRANSFUSION ONLY IN EXCEPTIONAL CIRCUMSTANCES. Your patient's hemoglobin (Hgb) is > 10.0 g/dL. Red blood cell transfusion is NOT generally indicated.

- MD must enter the desired number of units
Training and Implementation

• eLearning for providers and nurses
• Presentations at medical committees and department meetings
• Roaming trainers
• SuperUser support
Value Derived
Redirect BPA Firing

of Alerts per Month - Grouped by User Action

- Blue line: Remove dummy order and open order set
- Orange line: Cancel BPA
Metric 1: Guideline-Indicated Inpatient Transfusions

27% to 62%
Metric 2: Transfusion Orders with 2+ Units Transfused

- 43% (Jul '13)
- 31% (Jul '15)
- 19% (Jul '18)
Value Derived Summary

• Metric 1: Increase in number of guideline-indicated transfusions
 • Baseline: 27% (June 2013)
 • Education and awareness increased appropriateness prior to IT intervention
 • IT intervention provided additional and sustained increase in appropriateness (~54%)
 (September 2015 – October 2018)

• Metric 2: Decrease in the number of 2 unit transfusions
 • Baseline: 43% (June 2013)
 • Education and awareness increased appropriateness prior to IT intervention
 • IT intervention provided additional and sustained increase in appropriateness (~24%)
 (September 2015 – October 2018)
Value Derived Summary

<table>
<thead>
<tr>
<th>Transfusions</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC - Total</td>
<td>30886</td>
<td>30713</td>
<td>30331</td>
<td>30325</td>
</tr>
<tr>
<td>RBC Utilization Project</td>
<td>18643</td>
<td>18162</td>
<td>16961</td>
<td>17829</td>
</tr>
<tr>
<td>% of Total RBC transfusions</td>
<td>60%</td>
<td>59%</td>
<td>56%</td>
<td>59%</td>
</tr>
<tr>
<td>Type & Screen Specimens</td>
<td>60830</td>
<td>67290</td>
<td>69385</td>
<td>71043</td>
</tr>
<tr>
<td>T&S:RBC</td>
<td>0.31</td>
<td>0.27</td>
<td>0.24</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Next Steps

• Provide timely, data-driven feedback and targeted education
 • Reporting to individual providers, departments, quality committees
 • Continue to identify outliers
 • Targeted educational initiatives
Hospitalist Quality Initiative: RBC Utilization

- Quality Dashboard Measure: % compliance with guideline driven transfusions
- Individual identified dashboard data (monthly)
 - Physicians have access to the dashboard to view, filter and better understand their individual data

![Graph showing HO-AA-008: Guideline-indicated inpatient transfusions with 64.4% compliance]

- Improving
Hospitalist Quality Initiative: RBC Utilization

Monthly Meetings

• “Highlight a Hospitalist“
 • Highlight top performers in a given measure

• Provide forum to have an open dialogue about that physician's successes and challenges in hitting the quality goal
 • Generates discussion
 • Fosters a culture of teamwork to improve performance
 • Data sharing is not punitive

Highlight a Hospitalist

• Guideline-indicated transfusions
Next Steps

- Clinical decision support added to neonatal and pediatric RBC orders
 - Guideline verbiage appears based on Hgb level
 - Order by unit or volume appears based on patient’s weight
Lessons Learned

• Important to involve all major stakeholders
• Clinical testing is crucial
• Train as close as possible to the go-live
Thank you!